Corrigendum: Effect of polydispersity in concentrated magnetorheological fluids (2023 Smart Mater. Struct. 32 045014)

To cite this article: Júlio Gabriel de Falco Manuel et al 2024 Smart Mater. Struct. 33 049501

View the article online for updates and enhancements.
Corrigendum: Effect of polydispersity in concentrated magnetorheological fluids (2023 Smart Mater. Struct. 32 045014)

Júlio Gabriel de Falco Manuel1, Antonio José Faria Bombard1,* and Eric R Weeks2

1 Physics and Chemistry Institute, Federal University of Itajubá, UNIFEI - IFQ, Itajubá, MG 37.500-903, Brazil
2 Department of Physics, Emory University, Atlanta, GA 30322, United States of America

E-mail: bombard@unifei.edu.br

Received 8 February 2024
Accepted for publication 21 February 2024
Published 4 March 2024

In sections 6.1 and 6.2 of Manuel et al [1], the following results were published:

Table 1. A comparison between the values calculated by the rod distribution algorithm (1D, Farr and Groot [2]) and the random close packing algorithm (3D, Desmond and Weeks [3]).

<table>
<thead>
<tr>
<th>MRF</th>
<th>(\phi_{\text{RCP}} , (1\text{D}))</th>
<th>(\phi_{\text{RCP}} , (3\text{D}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>69.6%</td>
<td>67.3 (\pm) 0.2%</td>
</tr>
<tr>
<td>B</td>
<td>74.0%</td>
<td>71.4 (\pm) 5.7%</td>
</tr>
<tr>
<td>C</td>
<td>81.2%</td>
<td>79.6 (\pm) 5.0%</td>
</tr>
</tbody>
</table>

These simulations were based on the experimentally measured particle size distributions (PSD) pictured in figure 7. However, we realized after publication that the size distributions provided by our low-angle light scattering instrument are volume weighted. For example, for sample A, particles of size 2 \(\mu \text{m} \) and size 20 \(\mu \text{m} \) are shown as roughly equal percentages: which is their fraction of the total volume. Thus, particles of size 2 \(\mu \text{m} \) are roughly 1000 times as numerous as those of size 20 \(\mu \text{m} \), such that the two particle species comprise similar volumes. The simulation results above were obtained assuming that the measured experimental distributions were number weighted, thus vastly overestimating the contribution of the largest particles.

Accordingly, we redid our simulations using the correct PSD as input. The original 1D simulations were also calculated assuming we had log-normal distributions with a given standard deviation. For our revised 1D simulations, we were able to use the Farr and Groot algorithm directly applied to the experimentally measured PSD (noting, as above, that they are volume weighted distributions). The corrected results from the 1D and 3D algorithms are:

Table 2. A comparison between the values calculated by the rod distribution algorithm (1D, Farr and Groot [2]) and the random close packing algorithm (3D, Desmond and Weeks [3]).

<table>
<thead>
<tr>
<th>MRF</th>
<th>(\phi_{\text{RCP}} , (1\text{D}))</th>
<th>(\phi_{\text{RCP}} , (3\text{D}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>69.5%</td>
<td>68.3 (\pm) 0.2%</td>
</tr>
<tr>
<td>B</td>
<td>74.7%</td>
<td>72.3 (\pm) 0.3%</td>
</tr>
<tr>
<td>C</td>
<td>79.0%</td>
<td>75.5 (\pm) 0.5%</td>
</tr>
</tbody>
</table>

The new values are slightly different, but our conclusions are unchanged: sample C packs the most densely, and sample A packs the least densely. There is still a discrepancy between the 1D algorithm and the 3D algorithm. We place slightly more trust in the 3D results, which are direct simulations of packings. In contrast, the 1D algorithm was developed for slightly less polydisperse samples than our samples with particle sizes spanning two decades in size.

This corrigendum does not change the main conclusions of the article. It only corrects the results and the confusion between volume-weighted and number-weighted PSD. We apologize to the readers for these errors.

ORCID iDs

Júlio Gabriel de Falco Manuel https://orcid.org/0000-0001-7514-2204
Antonio José Faria Bombard https://orcid.org/0000-0002-8826-1197
Eric R Weeks https://orcid.org/0000-0003-1503-3633
References

Smart Mater. Struct. 32 045014

J. Chem. Phys. 131 244104

Phys. Rev. E 90 022204