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In this series of papers, the dynamics of polymers in melts and concentrated solutions are discussed 
with the eventual aim of constructing the rheological constitutive equation. The basic ideas are 
introduced in this paper. A mathematical model chain which describes the motion of the polymer 
in the fully entangled state is presented and its Brownian motion in equilibrium is studied. The 
model chain, called the primitive chain, shows much qualitatively different behaviour from that of 
the Rouse chain used in dilute solution theory. 

1. INTRODUCTlON 

The flow properties of polymer melts and concentrated solutions are very unusual 
and complicated. Though being basically liquids, they behave like an elastic solid 
under some conditions, and show a range of curious flow behaviours in various 
circumstances. These flow properties have significance for the industrial application 
of polymers, and have motivated a new field of science, their rheology. 

The rheology of polymeric liquids has been intensively studied for several decades 
both experimentally and theoretically. Extensive experimental studies have demon- 
strated the various basic distinctions of these polymeric liquids from the usual 
Newtonian liquids, and accumulated a large amount of systematic data. On the 
theoretical side, advances have been made mainly in phenomenological theories, 
which have clarified the interrelations between various phenomena and shown the 
universal aspects of the polymeric liquids. A recent comprehensive survey of this 
rapidly developing field is given in the textbook by Bird et a2.I 

These studies showed that in polymeric liquids the stress response is SL non-linear 
function of the past history of deformation. Such a relation is called the constitutive 
equation and is a basic starting point of every application of polymer rheology. 

The purpose of this series of papers (1 to 3) is to present the constitutive equation 
based on a molecular model. This final aim is achieved in Part 3. To that end the 
molecular motion of polymers in the condensed state is discussed in Parts 1 and 2. 
In this first paper, we present a simple mathematical model which describes the 
Brownian motion of polymers in equilibrium. In Part 2, this model is extended to 
the non-equilibrium case. 

The major factor governing the overall molecular motion of polymer in a dense 
system is the effect of entanglements i.e., chains cannot pass through each other. 
Since the mathematical formulation of the entanglement effect has already been given,’ 
it is desirable to construct the theory starting from a fundamental model of the 
polymer chain, e.g., the Rouse model. However, this approach encounters an 
extremely difficult mathematical problem. Therefore here, instead of starting from 
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this first principle, we start by constructing a model chain which reasonably describes 
the molecular motion in the dense system, using plausible physical arguments. This 
model chain, called the primitive chain, has a definite mathematical character and, 
once established, can be used to discuss various dynamical phenomena of entangled 
chains. In this sense the model chain is expected to play a role similar to the Rouse 

FIG. 1.-Chain segment AB in dense rubber. The points A and B denote the cross-linked points, 
and the dots represent other chains which, in this drawing, are assumed to be perpendicular 
to the paper. Due to entanglements the chain is confined to the tube-like region denoted by the 

broken line. The bold line shows the primitive path. 

chain which has been applied widely in dilute solution theory. Though our major 
interest is in rheological properties, other interesting features, such as diffusion and 
chain conformation are discussed where appropriate in Parts 1 and 2. 

The original idea of the primitive chain was presented by Edwards in the theory 
of rubber elasticity. In dense rubber, even if the cross-linking points are dilute, the 

b 
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FIG. 2.-Another version of fig. 1. The full line is the real chain segment and the dotted line the 
primitive path. 

chains cannot move freely because they cannot pass through each other. This 
constraint effectively confines each chain inside a tube-like region (fig. 1). The 
centre line of such a tube-like region was called the primitive path,4 and can be regarded 
as the shortest curve which has the same topology as the real chain relative to the 
other polymer molecules (see fig. 2). The primitive path is shorter than the real 
chain and, given a primitive path, the real chain is conceived as wriggling around it. 
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When the rubber is deformed, the primitive path is deformed, and the entropy 
associated with the wriggling motion also changes. One result is that, for large 
deformations, the system has a rubber elasticity much larger than that predicted by 
conventional rubber elasticity theory. 

The tube constraint is quite an effective idea for taking into account the entangle- 
ment effect, and is naturally used for the system without cross-links. However, a 
complication arises in this case. In an unlinked system, the tube which surrounds 
the chain is no longer fixed in space, but is constantly renewed as the chain diffuses 
through the tube (fig. 3). 

He described the 
wriggling motion by a diffusion equation of a " defect gas ", and showed that this 
motion is very rapid. (Its longest relaxation time Tes, called the equilibration time 
of the defect gas, is proportional to N i ,  where No is the degree of polymerization of 
the real chain.) He then argued that in a time scale t 2 Teq, the wriggling motion 
gives merely a fluctuation around the primitive path, and that, on average, the chain 
moves coherently with a certain diffusion constant, keeping its arc length constant. 

The dynamics of such a process were discussed by de G e n n e ~ . ~  
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FIG. 3.-In uncross-linked systems if the chain AB moves to A'B , part of the tube (AA ) is destroyed 
and a new part (BB ) is created. 

Since the diffusion is allowed to occur only along the primitive path, for the chain to 
change its conformation it has to disengage from the original tube. Based on this 
picture de Gennes calculated the effective diffusion constant of the centre of mass, and 
the time correlation function of the end-to-end vector. 

We call the centre line of 
the tube the primitive chain instead of the primitive path because the tube itself is 
moving with the chain and, when averaged over a time interval Teq, the real chain 
coincides with the primitive chain. What we are going to do is to set up the dynamics 
of the primitive chain. For the equilibrium problems, which are dealt with in this 
paper, the basic picture is essentially the same as that of de Gennes. However, the 
idea is put more completely into mathematical terms, and various time correlation 
functions are calculated by a new method which yields new results in addition to 
those of de Gennes. This method will be used in Parts 2 and 3. 

The present theory is an extension of these theories. 

2. THE CAGE A N D  THE PRIMITIVE CHAIN 

We try to construct the primitive chain model by imposing various assumptions, 
which will be denoted by (A), (B), etc. 
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The first and most important assumption is introduced to reduce the many-chain- 
problem to single-chain-problem (mean field approximation) : 

(A) In concentrated systems, each polymer chain moves independently in the 
mean field imposed by the other chains. The mean field is represented by a three 
dimensional field pattern (or cage). In this cage field, each polymer is confined in a 
tube-like region surrounding it. When the system is at rest, the cage is assumed to be 
fixed in space; when the system is macroscopically deformed, the cage also deforms 
in accordance with the deformation. 

The detailed structure of the cage is not important (clearly it is random), but its 
mesh size is important and denoted by a. The step length of the primitive chain is 
giveu by a. For the time being, a may be thought as a mean intermolecular 
di~tance,~.  or the correlation length c,7 if the polymer is non-ideal. (A more 
detailed argument on the meaning of the cage is given in Part 2). In any case, a is 
a function of only the mass concentration p of polymers and independent of molecular 
weight M. Theories suggest 

a K P-~MO. (2- 1) 

If a is identified with the correlation length, the mean field theory gives a = $,* and 
the scaling theory a = 4,g but a can be obtained exactly from experiment. 

An objection may be raised against the fixed cage assumption. The cage must 
fluctuate in time because it is made of other mobile chains. This fluctuation would 
be important for shorter chains or for lower concentrations (in which case the problem 
may be solved by a Rouse-like model in a certain viscoelastic medium).12 However, 
for a hrghly concentrated state of long chains, it is unlikely that such fluctuation 
occurs on the scale of the radius of the polymer chain because such large fluctuation 
involves the distortion of many other chains. In such a situation it is more likely 
that the free movement of a chain is limited to a certain distance a, and that the large 
scale movement of the chain is attained by a sliding motion through the network 
of other entangled chains. The fixed cage model is a simple idealization of such a 
situation. It is not an assumption that the motion of other chains is frozen. 

The primitive chain is a centre line of the tube in which the polymer is trapped. 
The real chain is wriggling around the primitive chain. This wriggling motion 
determines the basic statistical nature of the primitive chain. However, since the 
wriggling motion occurs rapidly ( t  5 T',), and its magnitude is small (length Sa), 
their effect can be represented by a few parameters; once these basic properties of 
the primitive chain are determined, the wriggling motion can be forgotten. (This 
situation is analogous to obtaining the hydrodynamic equations from the Boltzmann 
equation, in which case the effect of complicated collision processes is exprassed by 
viscosity. Actually the interplay between the wriggling motion and the primitive 
chain motion is important in some cases, but it will not be described here.) The 
primitive chain is characterized by the following two properties. 

In the equilibrium state, the conformation of a primitive chain is a random walk, 
and its step length (or Kuhn's persistence length) will be of the order of a. Thus for 
simplicity we assume : 

(B) The primitive chain is a freely jointed chain with step length a, and arc length L. 
The arc length L can be determined from the molecular property of the real chain as 
follows : the mean square end-to-end distance of the primitive chain is La, which 
must be equal to the mean square end-to-end distance Nob2 of the real chain (b 
being the effective bond length of the real chain.) Hence 

L = Nob2/a. (2.2) 
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The number Each step in the primitive chain is called a primitive chain segment. 
of primitive chain segments is denoted by N 

N = L/a = No(b2/a2>. (2.3) 
The second property determines the Brownian motion of the primitive chain. 
(C) The primitive chain is moving randomly forward or backward only along 

itself. Therefore every point on the primitive chain follows its neighbours. Impor- 
tant exceptions are chain ends ; when the chain moves forward, the “ head ” can 
choose its direction randomly and when the chain moves backward, the “ tail ” can 
choose random direction (fig. 4). This random motion is characterized by another 

A‘ 

B 
FIG. 4.-When the primitive chain moves forward, the “head” A can choose its direction randomly, 

and the rest of the primitive chain follows this motion, sliding by a constant arc length AS. 

important parameter, the curvilinear diffusion constant D, defined by 

where As is the curvilinear length by which the primitive chain travels in a time interval 
At. (As 2 0 means that the primitive chain moves forward and As c 0 means 
backward). The molecular weight dependence of D is determined by the following 
considerations. If the real chain is pulled with constant velocity us inside the tube, it 
feels a frictional force [us. It is clear that the friction factor [ is proportional to No, 
thus the Einstein’s relation indicates 

where k,  denotes Boltzmann’s constant. 
we write 

The parameter p is not easy to estimate theoretically. In the case of semi-dilute 
solution, however, the frictional force is mainly due to the relative motion between 
the polymer and solvent; therefore D will be independent of p and p = O*. 

D also depends on the concentration, thus 

D oc P - ~ M - ’ .  (2.6) 

3. THE LANGEVIN EQUATION 

Having defined the primitive chain model, we now set up a basic equation 
describing the Brownian motion of the primitive chain. It is desirable to write the 
Langevin equation in a differential form, but it turns out that this differential equation 

* However, it has to be remembered that, in general, polymer concentration changes the free 
volume of the solvent molecule and changes the solvent viscosity. 



1794 D Y N A M I C S  OF C O N C E N T R A T E D  POLYMER SYSTEMS 

produces many subtle and pathological problems related to the analyticity of the 
fnnctions described by the Wiener measure. Therefore to be clear, we start from a 
discrete model, and write the Langevin equation as a difference equation. 

We assume that the primitive chain is made of N points R1 . . . RN connected by 
bonds of constant length a, and that in a time interval At, the primitive chain hops 
exactly one step either forward or backward with equal probability. Clearly, this 
model gives the curvilinear diffusion constant 

D = a2/2At.  (3.1) 
To describe this random process, we introduce a random variable <(t), which 

takes the value 1 when the chain moves backward, or - 1 when the chain moves for- 
ward. Then the Langevin equation is 

where u ( t )  is a random vector of length a,  specifying the new primitive chain segment 
chosen by the chain ends. The time t now takes the value of a inultiple of At. 
Eqn (3.2) is merely a mathematical expression of the statement that if the chain moves 
backward [i.e., if c( t )  = 11, R, ( t )  . . . RN-,(t)  jumps to R2(t)  . . . &(t) and RN( t )  jumps 
to RN(t)+v(t) ,  etc. 

Eqn (3.2) is not easy to solve, (though not impossible, a complete analysis will 
be published later) because the random variable c( t )  appears as a coefficient of the 
unknown variable R,( t ) .  However, various time correlations of practical interest 
can be calculated easily without the full solution of eqn (3.2). The method is 
described in the next section. 

4. DIFFUSION PROPERTIES 
D I F F U S I O N  OF C E N T R E  OF MASS 

We first discuss the diffusion of the centre of mass of the primitive chain. The 
position of the centre of mass RG(t) is given by 

From eqn (4.1) and (3.2), we get 
1 1 
N 2N R,(t+At)-RG(t) = -<(t)F’(t)+-v(t) (4.2) 

where V ( t )  = RN(t) -R,(t) is the end-to-end vector. Hence, the “ velocity correlation 
function ” of RG(t) is 

([RG(t+At)-RG(t)] [RG( t ’+At ) -  RG(t‘)l) 
1 1 

= -<t(t)t( t’)  W )  W’)> + 4 3 < u ( t )  u(r’)> + N 2  



M. DO1 A N D  S. F.  EDWARDS 1795 

Now for t # t’ the first term (t(t) <(t’)  V(t)  V(t’))  vanishes because if t > t’, the 
average over &t), which is independent of the present state and past history, gives 
zero, and if t < t’, the average over Eft‘) gives zero. Hence 

(&I) <(t’) V(t)  V(t’)) = S,,( V(t)2)  = 6,,pNa2. (4.4) 
By the similar argument, the averages of the second and the third terms in eqn (4.3) 
are proved to give &‘a2 and 0 respectively. Hence 

The second term is neglected for N + 1.  Thus we get 
a2 

( [RG( t )  - RG(0)]2 > = 1 ’t?‘ 
t,t’ 

Using eqn (3.1), we get 

a” t - - -- 
N A f *  

Eqn (4.5) and (4.7) mean that the motion of the centre of mass obeys the Fick’s law, 
with diffusion constant 

D 
DG = __ 

3” 
That the diffusion of the centre of mass obeys Fick’s law 

To see this, let us imagine a hypothetical case that a polymer 
is not a trivial result. 
chain is trapped in an 

FIG. 5.-Illustration of the hypothetical case : a primitive chain AB is trapped inside an infinitely 
long tube, and undergoing Brownian motion. The tube itself is a random walk of step length a. 

infinitely long tube of random conformation (fig. 5). In this case, the mean-square- 
displacement of the nth point is given by 

(wn(t)--R,(0)l2) = a < lo(t)l> (4.9) 
where a(t) is the curvilinear distance by which the chain has moved in a time interval t .  
Since the distribution of a is gaussian; 

P(a, t )  = ( 4 7 1 D t ) - )  exp -- ( :it) 
eqn (4.9) is evaluated as 

(4.10) 
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Therefore if a JFt % La2, 

<[RG(t) -RG(0)I2) = ([&do - Rn(0)l2> c€ Jt (4.1 1) 

and in this case the motion of the centre of mass is not at all the Fickian diffusion. 
This example shows the important role of the random vectors chosen at the chain 

ends : though their effect is of the order of 1/N, it changes the stochastic behaviour 
completely. 

The above example also demonstrates that one has to be careful about the 
statistical correlation. It is interesting to examine at which points the difference 
between eqn (4.7) and (4.11) appear in the argument used in deriving eqn (4.7). For 
the infinite tube, u(t )  is not independent of <(t') (for t > t'), and the second and third 
terms of eqn (4.3) do not vanish. These terms turn out to cancel the first term, giving 
the J t  behaviour. 

From eqn (2.1), (2.3), (2.5) and (4.8), it follows that 

(4.12) 

The relation DG cc M-2 was first predicted by de Gennes and has been confirmed 
experimentally.1° [Our argument i s  more comprehensive than that of de Gennes 
since his argument, when applied to the above infinite tube case, does not predict 
the J t  behaviour of eqn (4.11).] 

D I F F U S I O N  OF A MONOMER 

Let us now consider the mean square displacement of the nth point of the chain : 

<[Rn(t) - R*(0)l2). 
This quantity is not easy to calculate by the probability method used by de Gennes: 

but can be straightforwardly calculated by the following method. We define 
f n m ( t )  = -Rm(0)12> (4.13) 

and set up a set of equations forf,,(t). 
R,(t+At) must be either R,+,(t) or Rn-l(t), hence 

For the internal part, i.e., for 2 < n < N -  1, 

(4.14) fnm(t+At) = 3[fn+l m(t)+fn-I m(t)l (2 < n < N - 1 ) .  
For n = 0, Rl( t+At)  is either R2(t)  or R,(t)+u(t) ,  then 

fim(t+At) = ; 5 f i m ( t )  +K[Rl(t)+ u(t)-Rm(0)12) 

= 3fim(t)+~{<[Rl(t)-Rm(0)12) +2<[R,(t)-Rm(O)I ~ ( t ) )  +(dt)')>) 

= + [ f 2 m ( t )  +f1rn(t)I + +a2- (4.15) 

Similarly, 
fhlndt  + At> = + [ f N m ( $ >  f f N -  1 dt)l + $a2* (4.16) 

Thusf,,(t) is easily solved from the set of difference eqn (4.14)-(4.16), with the initial 
condition 

fnm(0) = a21n-ml. (4.17) 

Though it is not difficult to solve this difference equation, the analysis becomes easier 
if the difference equation is rewritten into a differential equation. The translation 
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can be done by noting that eqn (4.14)-(4.16) are equivalent to the following equation 
for&, for 1 < n < N 

f ,?n(t+W = 3[&+1 m(t )+fn-1  m(01 

f o m  =firn+a2 

(1 G n G N )  
with the definition of fictitious elements : 

f N + 1  m = f N m  +a2* 
In the continuous limit, eqn (4.18) gives 

In terms of the arc length variables s = an, s’ = am, eqn (4.20) becomes 

a a2 
- f ( s ,  s‘; t) = D - f ( s ,  s’; t) at as2 

and eqn (4.19) reduces to 

af  af 
as a s  -a at s = O  and - = a  at s = L. - =  

The initial condition now becomes 
f ( s s ‘ ;  t )  = als-s’l. 

(4.18) 

(4.19) 

(4.20) 

(4.21 

(4.22) 

(4.23) 

Eqn (4.21)-(4.23) are easily solved by a standard method. (The introduction of an 
auxiliary function h(ss‘; t )  = f(s,s‘; t)-als-s’j helps solving the problem). The 
result is 

2Da 4aL pns pns’ 
f(s, s’; t) = als-s’l+- t +  -cos - cos -[1-exp (-Apt)] (4.24) 

L p = l  p2n2 L L 

and 

( [R(s ,  t ) -  R(s, 0)12) = 2a L D t  + C O0 - 4aL COs ~ ~ ) [ l - e r p ( - A p t ) J  (4.25) 
p = l  p2n2 

where 
AP = p21Td; Td = L2/Dn2.  (4.26) 

The longest relaxation time Td was called the disengagement time by de G e n n e ~ . ~  
By eqn (2.1), (2.2) and (2.6), the concentration and molecular weight dependence of 
Td is given by 

Td K M3p2a+P. (4.27) 

It is easy to see that eqn (4.24) is an expected result : for t % Td, the motion is 
determined by the motion of the centre of mass, and eqn (4.25) agrees with eqn (4.7) ; 
for t < Td, the motion is the same as that of a chain in infinite tube [eqn (4.10)]. 

The time correlation function of the tangent vector of the primitive chain, 

(4.28) d 
U ( S ,  t) = - R(s, t), 

as 
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is easily calculated from eqn (4.24). Differentiating eqn (4.24) with respect to s and sf, 
we get 

1 a2 
2 as as' 

(u(s, t )  . u(sf, O)} = - - - f (s, s'; 0 

(4.29) 

which is a result obtained by de G e n n e ~ . ~  
An interesting observation is that the results so far obtained, eqn (4.7), (4.24) 

and (4.29) are exactly the same as the Rouse chain if 0 / 3  is replaced by the diffusion 
constant of a "bead" of the Rouse chain. Also it can be shown that the time 
correlation functions of quantities which are linear in R(s, t )  are the same as in the 
Rouse chain. Such a coincidence may be rather striking considering the basic difference 
between the Rouse chain and the primitive chain. However, this coincidence is not 
very profound. If we look at other time correlation functions, there is a significant 
difference between them. This is shown in the next example. 

D Y N A M I C  S T R U C T U R E  FACTOR 

As the last example, we consider the dynamic structure factor. As in the case of 
neutron scattering, we introduce two structure factors ; 

Sincoh(k, t ; n> = ( ~ X P  (ik [Rn(t) -Rn(O)ll> 
N 

scoh(k, t )  = Nd2 C < exp (ik [Rn( t ) -Rrn(O) l )>.  (4.30) 

At the present stage, it is not clear what sort of scattering source is used to measure 
these structure factors. (Note that the pertinent wavelength is in the region of 
A 5 lo3 A and the energy exchange is very small ( l / o  2 1 s). A high resolution 
photon correlation technique may be a possible one.) Apart from these problems, 
calculation of these scattering functions is interesting because the result shows a 
qualitative difference from that of the Rouse chain. 

The calculation is done in almost the same way as in the previous section. We 
define 

and set up a set of difference equations for g,,(t). Clearly gnm(t) satisfies the same 
equation as eqn (4.14). The only difference is the boundary condition. Instead of 
eqn (4.19), we now have, 

g d t )  = <exp (ik [R,(t)  + u(t)  - R m ( 0 ) I ) )  = g,rn(f) < exp [ik u ( t ) l >  (4.32) 

n,m= 1 

gnm(t> = ( ~ X P  (ik [Rn(t)-Rm(O)I)) (4.3 1) 

(4.33) 
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Therefore the final set of differential equations for g(s,s’ ; t )  becomes 

(4.35) 

where 

The initial condition for g is 
TC = k2a/6.  

g(s,s’; t = 0) = (exp (ik [R(s,O)-R(s’,O)])) = exp (-icls-s’l). (4.36) 

The solution of the above equation is 

where 
,u = &k2aL 

and ap and p p  are the solutions of the equation 
ap tan a, = p, p p  cot p p  = -p. 

From eqn (4.37), we get 

Sjncoh(k, t ;  s) = (exp (ik [R(s, t ) -R(s ,  O>]>> 

(4.38) 

(4.39) 

” sin2 r+(. - k)] exp ( - 4DfB:/L2)} (4.40) 
P 2  +P 
L L  

Scoh(k, t )  = A Jo ds 1 ds‘ (exp (ik [R(s, t )  - R(s‘, O)])) 
0 

co = c  ” sin2 ap exp ( -4Dta;lL’). 
p = l  a;(P2+a,2+P) 

(4.41) 

The expressions are simplified for two limiting cases, (i) p < 1, i.e., k2La < 1. In 
this large wavelength limit, the scattering factor is determined only by the motion of 
the centre of mass and the dynamic structure factor reduces to 

(4.42) Sincoh(k, t, S )  = Scoh(k, t )  = ~ X P  (-DGk2t)* 
(ii) p + 1, i.e., k2La + 1.  In this case, ap and p p  are approximated by 

a, = (p-$)n,  p p  = p n  ( p  = 1,2, .  . .). 
Hence, 

(4.43) 

(4.44) 
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where Ap is 
replacing the 
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given by eqn (4.25). Approximating cos2[pn(s-+L)/L] by 3, and 
sum over p by an integral, we get 

Sincoh(k, t ; S) = exp (k4a2Dt/9) erf (k2aJD1/3) (4.45) 
where 

L 

erf (x) = J. J dy exp (- y2). 
0 

(4.46) 

This expression is more easily obtained as follows ; when k2La % 1 the primitive 
chain is assumed to be infinite, and Slncoh(ky t ;  s) can be calculated from the infinite 
tube model of fig. 5;  

(4.47) 

which gives eqn (4.45). In the Rouse chain, Sincoh(k9 t ;  s) is given by de Gennes '' 
S!,R,",",'")(k, t; s) = exp { - k2([R(s,  t )  -R(s, O)]')] 

= exp (-$$). 
In contrast the asymptotic form of eqn (4.45) is 

(4.48) 

(4.49) 

Therefore the decay in &ncoh of the primitive chain is much slower than that of the 
Rouse chain. 

The difference appears more significantly in the coherent scattering factor. From 
eqn (4.41) and (4.43), we get 

(4.50) 

Note that the characteristic decay rate of Scoh(k, t )  is given by l/Td, and strongly 
depends on the molecular weight. This is in sharp contrast to the Rouse chain. 
In the Rouse chain, the coherent scattering factor decays independently of the 
molecular weight, when k2Nob2 1. This difference comes from the basic difference 
in the diffusion motion. In the Rouse chain, the decay of Scoh(k, t )  occurs at every 
point on the chain, whereas in the primitive chain, the decay occurs only at the chain 
ends as shown in fig. 6. 

(a) (b) 
FIG. 6.-In the Rouse chain (a), the memory of p k  = 2, exp [ik . Rn(t)] is lost at every part of the 
chain, whereas in the primitive chain its memory is lost only at the chain ends. Therefore the decay 
of (pk(t)p-k(O)> is independent of molecular weight in the Rouse chain, whereas in the primitive 

chain it strongly depends on the molecular weight. 
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5. CONCLUSION 

In this paper we have shown how the motion of polymer chains in concentrated 
systems is idealised and have presented a model chain called the primitive chain. 
The primitive chain is characterized by two parameters, the step length a and the 
diffusion constant D, both of which depend on concentration and the molecular 
weight. Its Brownian motion is described by a simple Langevin equation [eqn (3.2)]. 
The analysis of this Langevin equation indicates the following characteristic aspects 
of the Brownian motion of the primitive chain. 

(i) The diffusion coefficient DG of the centre of mass and the characteristic relaxa- 
tion time Td depend strongly on molecular weight and concentration as was first pre- 
dicted by de Gennes. 

(ii) The mean square displacement of a point on a primitive chain and the time 
correlation function of the tangent vector are exactly the same as in the Rouse chain 
provided D and a are appropriately interpreted. 

(iii) The dynamic structure factors are qualitatively different from those of the 
Rouse chain. For the wave vector l / a  < (kl < l/,/z, the incoherent scattering 
factor Sincoh(k, t> decays slowly in time as Sfncoh(k, t> GC I/$ and the coherent 
scattering factor SCoh(k, t )  decays very much more slowly with a relaxation time Td. 
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